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Artificial Intelligence in Safety Critical Applications
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Security

Deep learning is being applied in many safety critical domains
Interacting with and making decisions in the presence of humans

Models must not propagate bias and reliably inform uncertainty

Z e T - A End-to-end Robust and Trustworthy Al Solutions
W HEMIS A @ themisai.io



Themis Al: Empowering the world to create,
advance, and deploy trustworthy Al
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Bias and Uncertainty in Artificial Intelligence
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Model Bias

Model decision changes If it exposed
to additional “sensitive” feature inputs
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Uncertainty

Can we train models to understand
when they dont know the answer?
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Bias and Uncertainty in Artificial Intelligence
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Bias in Facial Detection Systems
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Gender Darker Darker Lighter Lighter Largest
Classifier Male Female Male Female Gap
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Google Photo’s: Image Labelling

Google ‘fixed' its racist
algorithm by removing
gorillas from its image-
labeling tech

Nearly three years after the company was called out, it
hasn’t gone beyond a quick workaround

By James Vincent | Jan 12, 2018, 10:35am EST
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Problems with Methods for Mitigating Bias

Knowing your dataset is biased is not enough, need algorithmic methods for de-biasing

Label for task
(facial detection)

Biased dataset

Label biased Re-weight and
features adjust dataset
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How can we know which labels to de-bias!?
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Mitigating Bias Through Learned Latent Structure

Learn latent
structure
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Mitigating Bias Through Learned Latent Structure

Estimate
distribution
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Mitigating Bias Through Learned Latent Structure
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Mitigating Bias Through Learned Latent Structure

Learn from fair
distributions

| atent distributions used to create fair
and representative dataset
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Results: Increasing Strengths of Debiasing
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Bias and Uncertainty in Artificial Intelligence
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Bias and Uncertainty in Artificial Intelligence
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Uncertainty

Can we train models to understand
when they dont know the answer?
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Why Care About Uncertainty!?

— P(cat)
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Why Care About Uncertainty?

VWe need uncertainty metrics to assess the network’s confidence in its predictions.

» P(cat)= 0.2

s % % |
» P(dog) = 0.8

Remember: P(cat) + P(dog) = 1
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Deep Evidential Learning

View learning as an evidence acquisition process

More evidence — increased predictive confidence

Assume data is drawn from a Gaussian with
unknown mean and unknown variance

(- ) ~ N (g (11,0%) ~ Evidential Prior
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Place prior over distributional parameters to
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Monocular Depth Estimation

Task: Given a monocular RGB image, predict the depth of every pixel

Applications in autonomous vehicles, home and industrial robots

Input Image Predicted Depth Evidential Uncertainty
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Evidential uncertainty is well

Uncertainty scales with error
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Calibration to errors and out-of-distribution data

Strong increase In predictive uncertainty on out-of-distribution data
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Bias and uncertainty in deep learning

Model Bias

Model decision changes If it exposed
to additional “sensitive” feature inputs
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Can we train models to understand
when they dont know the answer?
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Capsa: automatically transform Al models for risk-
aware learning and deployment
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Themis Al: Empowering the world to create,
advance, and deploy trustworthy Al
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Themis Al: Empowering the world to create,
advance, and deploy trustworthy Al

DATA SCOPE ‘ ’

GitHub

[ Bus avor We are releasing capsa
FREE to the public!
Signup here:

( Al GUARDIAN )

Al CYCLE

( CERTIFICATION )

CAPSA

bit.ly/themisai
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